NOVA MEDICAL SCHOOL

Intracoronary transfer of human umbilical cord matrix-derived Mesenchymal Stem Cells (hUCM-MSC) for the preservation of left ventricular function after acute myocardial infarction

Assessment of invasive hemodynamic effects and potential underlying mechanisms in a large animal pre-clinical model

PhD Dissertation

Luís Raposo, MD | Lisbon | June 2023

Supervisors

Nuno Cardim, MD, PhD Nova Medical School - UNL

Adelino Leite Moreira, MD, PhD Faculdade de Medicina Universidade do Porto

Background

The evolving concepts of regenerative and Cell therapies for heart disease

1st Generation	2nd Generation	3rd Generation	Emerging strategies		
Skeletal myoblasts	Allogeneic MSCs Embryonic stem cells (adipose, BM, UC) (ESC)		Whole organ matrix decellularization		
Autologous Bone Marrow	Cardiac Stem Cells (cKit+ CSC)	Induced Pluripotent Cells (iPS)	Biomaterials		
Circulating blod derived EPCs (CD133)	Cardiosphere Derived Cells (cKit+ CDC) (non-coding mRNAs, cytokines, groth factor				
Bone Marrow Fractions (MNC, EPS, MSC)	Combined Cell Therapy and Hybrid strategies				
Autologous adipose derived cells (ADSC)	Repeated cell administrations				
Cell & target orga (hypoxia, sho	n preconditioning ock waves)				
(inposid) one					

Lineage commitment with cardiopoietic cocktails and gene transfection

Characteristics	Ν	Treatment effect (95% CI)	p-value*	
Overall ¥	1494	2.55 (1.83, 3.26)		Hel
Age (years)				
<55	676	3.38 (2.36, 4.39)	0.03	H
≥55	809	1.77 (0.80, 2.74)	0.00	H♦H
Diabetes				
Yes	229	2.87 (1.32, 4.41)	0.39	H+H
No	1263	2.10 (1.29, 2.90)	0.55	III
Symptoms to PC	l (hours	•)		0.011
<6	764	1.79 (0.81, 2.77)	0.13	H♦H
≥6	509	2.98 (1.79, 4.16)	0.10	HI
IRA				
LAD	1239	1.98 (1.16, 2.80)	0.11	H+I
RCA/LCX	235	3.53 (1.82, 5.23)	0.11	H+H
LVEDVI (ml/m²)				2010 12
<100	988	1.79 (0.84, 2.73)	0.11	II
≥100	326	3.00 (1.85, 4.15)		H
LVEF (%)				
<40	503	5.30 (4.27, 6.33)	< 0.001	H
≥40	991	1.45 (0.60, 2.31)		H+I
Infarct size (g)				
<20	169	1.50 (-0.69, 3.69)	0.84	⊢ •+µ
≥20	355	1.54 (-1.46, 4.54)	0.04	· • • + •
MVO				
Presence	350	1.41 (-0.79, 3.61)	0.67	⊢ ●+ 1
Absence	196	1.80 (-0.21, 3.80)		⊢ ♦-1
				10 5 0
				Cell therapy
				better

Contro

better

Most cell therapy studies in AMI have used autologous bone marrow derived cells

Effect of intracoronary BMC on left ventricular remodelling and Ejection Fraction in STEMI patients Patient level Meta-analysis of 16 RCTs N=1,494 pts (986 BMC vs 657 controls)

Parameter	Variation vs. control	р
FEVE (%)	+2.55% (1.8 to 3.3)	<0.001
VTSi (ml/m²)	-3.17 (-4.8 to -1.47)	<0.001
VTDi (ml/m²)	-2.6 (-3.84 to -1.35)	<0.001

Timing of IC injection within 1 day (1RCT) 3 to 28 days (15 RCTs)

European Heart Journal (2014) 35, 989–998

Effect of BMCs in Acute STEMI

On long term (> 2000 Controls) - Cinics I south of Several AMI have used Meta-Analysis & Review of 41 RCTs of autologous Bone Marrow derived Cells Meta-Analysis & Review of 41 RCTs of autologous Bone Marrow derived Cells Meta-Analysis & Review of 41 RCTs of autologous Bone Marrow derived Cells

N=1564 active treatment vs N=1168 controls

Outcome	Cells (n/N)	No Cells (n/N)	1	Risk Ratio	95% CI	þ value	Heterogeneity (I ²)	
Total Mortality	34/538	32/458	-	0.93	0.58-1.5	0.77	0%	
Cardiovascular Mortality	23/277	18/250	-	1.04	0.54-1.99	0.91	7%	
Myocardial Infarction	20/624	25/442		0.64	0.36-1.12	0.12	0%	
Admission for HF	18/459	27/366		0.55	0.30-1.0	0.05	0%	
Death/MI/HF	24/262	33/235		0.63	0.36-1.1	0.10	12%	
Arrhythmia	/23	7/226	_ +•	1.39	0.58-3.37	0.46	0%	
Restenosis	10/213	14/182	+	0,.58	0.27-1.25	0.17	0%	
		0.1	<u></u>	10				
		Favors Cell T	nerapy Favors	Standard Thera	РУ			
			Cochrane	Database of	Systematic	c Review	s 2015, Issue 9. Art. No.: CE	006536.

Cochrane Database of Systematic Reviews 200 ||s**40**.9.002/14651858 CD006536.pub4.

Impaired functional potency has been considered a limitation for translational effects of autologous cells

Profoundly Reduced Neovascularization Capacity of Bone Marrow Mononuclear Cells Derived From Patients With CIHD

NOVA MEDICAL SCHOOL

Circulation. 2004;109:1615-1622

ischemic ischemic

Control

Healthy controls

ICMP

Donor Myocardial Infarction Impairs the Therapeutic Potential of Bone Marrow Cells by an IL-1-Mediated Inflammatory Response

Sci Transl Med. 2011 September 14; 3(100): 100ra90.

Limitations of autologous cell therapy protocols

Biological potency affected by patient comorbidity, including AMI itself

Need for invasive harvest.

Unavailable for acute administration (reperfusion adjuvant)

Standardization of protocols and impact of cell manipulation

Inconsistency/heterogeneity of cell product (number and composition)

CD44

CD19

20 -

20 -

20

20

60

40

20

60

40

20

Count

Count

Mesenchymal Stromal Cell as ideal candidates to allogeneic cell therapy

Control Differentiated Differenciation Adipogenic Differenciation Condrogenic **CD73 CD90 CD14 CD105** 60 60 40 40 20 -20 20 Differenciation Osteogenic **CD34 CD45 HLA-DR CD31** 60 60 -60 . 60 40 40 . 40 40

Mesenchymal Stromal Cell as ideal candidates to allogeneic cell therapy

NOVA MEDICAL SCHOOL

The Human Umbilical cord as a Source of precursor cells

NOVA MEDICAL SCHOOL

- Can be obtained in very large numbers (virtually unlimited)
- Do not need invasive harvest & little ethical concerns
- May be available as an off-the-shelf product (suitable for the acute setting)
- Enhanced capacity of cardiopoietic induction.
- Better secretory profile than adult MSC (less prone to comorbidity / senescence)

Most human studies with MSC in AMI have used adultderived cells, administered days after reperfusion

Author (year)	Source of MSCs	Comparison	MSCs	Timing	Dosage and volume
			Route, condition		
Acute myocardial in	farction				
Chen (2004)	Autologous	Saline	IC, Fresh	18 ± 0.5 days post-PCI	$8-10 \times 10^9$,1 dose – NR
Chullikana <mark>(</mark> 2015)	Allogeneic	Plasmalyte A	IV, Fresh from cryopreserved	2 days post-PCI	2 million cells/kg, 1 dose – 0.5 mL/kg
Gao (2013)	Autologous	Standard treatment	IC, Fresh	Post-PCI Mean 17 \pm 1 days	$3\pm0.5 imes10^{6}$ 1 dose – 10 mL
Gao (2015)	Allogeneic	Heparanized saline	IC, Fresh	Within 5–7 days of PCI	6 × 10 ⁶ , 1 dose – 10 mL
Hare (2009)	Allogeneic	Placebo	IV, NR	Patients randomized 1–10 days post AMI	0.5, 1.6, 5×10^{6} 3 dose escalation cohorts - NR
Houtgraaf (2012)	Autologous	Placebo	IC, Fresh	24 hours post-PCI	$17.4 \pm 4.1 imes 10^{6}$ 1 dose - NR
Lee (2014)	Autologous	Standard treatment	IC, Fresh	BM aspiration done 4 ± 2 days post-admission; culture took 25.0 ± 2 days	$7 \pm 1 \times 10^7$ 1 dose - NR
Musialek (2015)	Allogeneic	No comparison	IC, Fresh from cyropreserved	Within 5–7 days of PCI	30 × 10 ⁶ 1 dose – 30 mL
Rodrigo (2013)	Autologous	Historical control	IM, Fresh	21 ± 3 days post-MI/PCI	$31 \pm 2 \times 10^{6}$ 1 dose – 5 mL
Wang (2014)	Autologous	Saline	IC, Fresh	14 days post-PCI	2 × 10 ⁸ 1 dose – 2 mL
Yang (2010)	Autologous	No comparison	IC, Fresh	NR	$1 \pm 2 \times 10^7$ 1 dose - NR

NOVA MEDICAL SCHOOL

Stem Cells Transl Med. (2018) 7(12):857-66

No studies have been performed using hUCM-MSC in relevant preclinical models of AMI with reperfusion

Characteristics of experimental pre-clinical studies of UC-MSC in Acute Myocardial Infarction

Study Reference	Experimental Model	Study Design	Placebo	Blinding of endpoint evaluation
Latifpour et al. ¹⁵⁴	Surgical LAD ligation	Non-randomized	Yes	Yes (for Echocardiography)
Cardiology, 2011	Rabit	Positive and		Not reported for pathology
	Transepicardic injection	negative controls		and immunohistochemistry
				analysis
Zhang et al. ¹⁵⁵	Surgical LAD ligation	Randomized	Yes	Not reported for any of the
Coron Artery Dis. 2013	Mini pig	Placebo controlled		endpoints
	Transepicardic injection			
Lim et al. ¹⁵⁶	Surgical LAD ligation	Non-randomized	Yes	Not reported for any of the
Stem Cell Res Ther. 2018	Mini pig	Placebo controlled		endpoints
	Repeated intravenous injection			

Supports open access

Cytotherapy Volume 23, Issue 11, November 2021, Pages 974-979 **CYTOTHERAP**

8

CiteScore

6.196

Impact Factor

International Society Cell & Gene Therapy®

Human umbilical cord tissue-derived mesenchymal stromal cells as adjuvant therapy for myocardial infarction: a review of current evidence focusing on pre-clinical large animal models and early human trials

Luís Raposo^{1 2 3} André P. Lourenço^{4 5}, Diana S. Nascimento^{6 7 8}, Rui Cerqueira^{4 5}, Nuno Cardim^{2 3}, Adelino Leite-Moreira^{4 5}

Study Aims

Study Purposes

General Objective

 To contribute to the evidence supporting the use of an allogeneic GMP-compliant hUCM-MSC cell product suitable for human trials and, eventually, clinical use.

Specific Objectives

- To establish a fully percutaneous large-animal pre-clinical model of AMI with reperfusion suitable for preclinical experimentation.
- To investigate the **safety** and **efficacy** of intracoronary delivery of hUCM-MSC as **adjuvant therapy** in a relevant preclinical large-animal (swine) model of acute myocardial infarction with reperfusion.

Scientific hypothesis & Primary endpoint

Study hypothesis

• Intracoronary delivery of a **xenogeneic GMP-compliant hUCM-MSC** product, early after reperfusion is **superior to placebo** for preserving left ventricular function in the setting of experimental myocardial infarction.

Primary endpoint

• LV ejection fraction evaluated at 8-Weeks follow-up after reperfused acute myocardial infarction, using high-fidelity invasive pressure-volume measurements.

Exploratory Secondary Endpoints

Efficacy

Histopathological examination

Skinned cardiomyocytes

Differential gene expression

Transthoracic echocardiogram

Biomarkers

Safety

Assessment of coronary flow

Animal wellbeing and mortality

Semi-automated quantification of infarct size (MiQuant®) Fibrosis and cardiomyocyte hypertrophy in the remote zone Length-tension relationships (active and passive tension) Whole genome RNA-sequencing Morphometric and functional parameters NT-proBNP and Galectine-3 (ELISA)

Doppler-derived real time coronary flow velocity

Methodology

Animal model and study procedures

Model Implementation Stage

⁽¹⁾ Comp Med. (2009) 59(3):272–9 ⁽²⁾ Circ Res. (2013) 113(2):153–66

Experimental model Implementation Stage

ΒZ

RLV

	INFARCT SIZE- AREA	INFARCT SIZE- MIDLINE-LENGTH
15#4	2.7%	0%
15#5	10.1%	13.1%
15#6	18,8%	17,5%

Representative sections of the (IZ), border zone (BZ) and remote LV region (RLV) stained with Trichrome Masson. Scale (IZ): 100 μm (left column) and 25 μm.

NOVA MEDICAL SCHOOL

Randomized controlled experiment Study design

Blinded endpoint evaluation

Summary of Statistical analysis

Sample Size estimation

- 20% difference in P-V loop derived ejection fraction in the active treatment group compared with vehicle
- 80% power, with significance level set at 0.05 for a 2-sided comparison of means in one-way ANOVA
- Estimated n=7 animals per group for final analysis (25% acute mortality accounted for).

Descriptive and inferential

- Shapiro-Wilk's test for normality
- One-Way ANOVA between groups with normal distributions (& Tukey's or Fischer's LSD for *post hoc* comparisons between groups)
- Kruskal-Wallis's test for non-parametric data (& FDR method of Benjamini and Hochberg adjustment for multiple comparisons)
- End-systolic and end-diastolic P-V relationships compared by ANCOVA with end-systolic elastance and chamber stiffness constant beta as dependent variables and other coefficients as covariates.

Study Procedures Experimental setup

Overview of the operating room

Placement of femoral vascular sheaths

Study Procedures Induction of myocardial infarction

Balloon oclusion of the mid LAD during 120 minutes

Animal during the MI induction procedure

Study Procedures Intracoronary delivery of hUCM-MSC & coronary flow

Intracoronary infusion of 0.5x10⁶ hUCM-MSC/Kg/min (or matching placebo) through a microcatheter in the infarct related artery

Real time flow velocity measurement using a doppler sensor-tipped guidewire

Study Procedures Transthoracic Echocardiogram

Sham (normal LV)

Post-AMI TTE (PLAX)

Study Procedures Invasive Hemodynamic assessment (P-V loop)

Power Lab 16-Chanel acquisition system (ADInstruments™)

5F 12-eletrode catheter and solid-state pressuer sensor (Millar™)

Study Procedures Invasive Hemodynamic assessment (P-V loop)

Volume calibration

real-time thermodilution-derived CO measurement saline injection in the right atrium for parallel conductance determination

- Load-independent measurements inferior vena cava occlusion (25 mm balloon) ventilation suspended at end-expiration
- Volume data calibrated for swine BSA according to corrections for mini-pig strains.
 - Pressure measurement Solid state transducer (built in)
- Evaluations at rest and under steady-state inotropic stimulation with dobutamine 0.5 µgr/Kg/min.

Study Procedures Euthanasia and harvest of biological specimens

- Blood collection (20 ml) for biomarker determination (NTproBNP and galectine-3).
- Beating hearts collected by median sternotomy and euthanasia by exsanguination under deep anaesthesia.
- Antegrade perfusion with hiperK+ cardioplegic solution
- Tissue biopsies collected in the infarct area, border-zone and remote left ventricle.
- Cryopreservation for molecular biology studies

Results of the randomized controled study

Baseline Characteristics of study animals

	Sham (n=8)	AMI+Vehicle (n=12)	AMI+hUCM-MSC (n=11)	p value*
Weight (Kg)	29.1±4.0	31.6±9.7	38.8±8.6	0.258
SBP (mmHg)	111.6±14	113.5±12.3	104.2±10.2	0.302
DPB (mmHg)	68.8±11.7	64.9±14.7	63.4±8.9	0.333
MBP (mmHg)	87.0±13.4	84.4±13.3	79.8±9.8	0.479
CVP (mmHg)	11.0±2.3	10.9±2.4	11.6±3-0	0.614

SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; MBP, Mean Blood Pressure; CVP, Central Venous Pressure; MI, Myocardial Infarction; hUCM-MSC, Human Umbilical Cord Matrix Mesenchymal Stromal Cells

*Analysis of Variance (ANOVA)

Study flowchart

NOVA MEDICAL SCHOOL

Randomized study Mortality and causes of death

Death during index procedure
Death betwen index proceure & 8 weekss
Survived 8 weeks

50% of total mortality due to fatal arrhythmia

Randomized study Mortality and causes of death

*Chi² with Yate's correction

Safety of hUCM-MSC intracoronary delivery

Pressure-volume relationships

Pressure-Volume Relationships

Remodelling and LV systolic function parameters

NOVA MEDICAL SCHOOL

p>0.1 for all comparisons

Pressure-Volume Relationships Diastolic Function Parameters

AMI+Vehicle (n=7)

Sham (n=6)

Transthoracic Echocardiogram Morphometric and functional analysis

NOVA MEDICAL SCHOOL

Transthoracic Echocardiogram Morphometric and functional analysis

	EDD	ESD	Shortening	EE (%)	Wall thickne	ess (mm)	CIS (%)	Longitudinal
	(mm)	(mm)	Fraction (%)	EF (70)	Mid-Cavity	Apical*	GL3 (70)	T2P Global
Sham-vehicle	33.8+3.6	18.5+5.7	45.6+8.3	47.0+6.2	9.4+2.5	9.3+2.5	-14.6+2.4	400+53.7
(n=3)	55102510	10.010	10102010	1710-012	5112210	5101210	11101211	1001001/
AMI-vehicle	38 8+7 3	23 1+7 2	40.0+4.2	<i>A</i> 3 7+ <i>A</i> 1	0 1+1 0	5 /1+1 0	-10 2+1 9	374 0+50 5
(n=5)	30.017.3	23.117.2	40.014.2	43.714.1	5.111.5	5.411.5	-10.211.5	574.0150.5
AMI-MSC	25 510 5	10 1+9 2	10 616 0	59.017.1	10 7+2 7	67127	14 2+1 5	407 0+20 2
(n=7)	5 5.5±0.5	19.110.2	40.0 <u>1</u> 0.0	30.0±7.1	10.712.7	0.7±2.7	-14.311.3	407.0±30.2

EF, ejection fraction; EDD, end-diastolic diameter; ESD, end-systolic diameter; GLS, Global Longitudinal Strain; T2P, Time to Peak.

*p=0.068 (ANOVA)

Skinned Cardiomyocytes

Active and Passive Tension in isolated Cardiomyocytes

Histopathological examination Histological Infarct Size NOVA MEDICAL SCHOOL Sham **MIQuant**[®] **TTC Staining Infarcted Area Infarcted Midline** AMI + vehicle Sham (n=6) AMI+Vehicle (n=7) AMI+MSC (n=6) Δ=-2.2% 20 30 Δ=-3.1% 🗐 🍘 i **60** * δ AMI + hUCMMSC 13 20 Percent (%) Percent (%) 7 10 Infarted area **Border zone Remote region** 15,9% 13,7% EDVi (ml/m2) 22,7% 19,6% Infarct area Midline lenght *p=0.23 vs AMI-Vehicle §p=0.16 vs AMI-Vehicle

Histopathological examination

Relationship between infarct size and cell viability

Histopathological examination Fibrosis and hypertrophy in remote myocardium

Differential gene expression Whole genome analysis (RNA-seq)

Galectine-3 vs Fibrosis in remote area

Serum Biomarkers

Limitations

Small sample size and type II error for exploratory endpoints.

Lack of functional evaluation at intermediate time points and short follow-up.

□ No comparison with other cell dose and IC infusion rates.

□ No comparison with injection of hUCM-MSC at a later time point after MI

Lack of advanced imaging modalities to assess *in vivo* infarct size

Lack of the thrombotic milieu of STEMI

Conclusions

- In the selected dose and infusion rates, intracoronary delivery of a clinical grade GMPcompliant allogeneic hUCM-MSCs cell product was safe early after reperfused AMI, with a neglectable effect on coronary flow (as assessed by real time APV).
- As compared with placebo, hUCM-MSC improved left ventricular systolic function at 8weeks post-AMI.
- Effect was **not explained by reduction of infarct size** alone.
- Improved intrinsic cardiomyocyte contractility, lower SVR and favourable modifications of tissue remodelling of the remote myocardium were observed, providing clues for the biological effects, which deserve further clarification.
- Translational studies are warranted and have a solid background.

Frontiers in Cardiovascular Medicine

Frontiers | Frontiers in Cardiovascular Medicine

TYPE Original Research PUBLISHED 31 May 2023 DOI 10.3389/fcvm.2023.1186574

Check for updates

OPEN ACCESS

EDITED BY

Narasimman Gurusamy, Nova Southeastern University, United States

REVIEWED BY

Zhaoping Ding, University Hospital of Düsseldorf, Germany Pierre-Yves Marie, Centre Hospitalier Universitaire de Nancy, France

*CORRESPONDENCE

Luís Raposo Ifor.md@gmail.com

RECEIVED 14 March 2023 ACCEPTED 09 May 2023 PUBLISHED 31 May 2023

CITATION Raposo L, Cerqueira RJ, Leite S, MoreiraHuman-umbilical cord matrix mesenchymal cells improved left ventricular contractility independently of infarct size in swine myocardial infarction with reperfusion

Luís Raposo^{1,2,3}*, Rui J. Cerqueira^{4,5}, Sara Leite^{4,6,7}, Liliana Moreira-Costa⁴, Tiago L. Laundos^{7,8,9}, Joana O. Miranda⁴, Pedro Mendes-Ferreira^{4,10}, João Almeida Coelho⁴, Rita N. Gomes^{7,8,9}, Perpétua Pinto-do-Ó^{7,8,9}, Diana S. Nascimento^{7,8,9}, André P. Lourenço^{4,11}, Nuno Cardim^{2,3} and Adelino Leite-Moreira^{4,5}

Luis Raposo, MD

Study Pl

Team Members & Co-Investigators

Centro de Investigação Médica (CIM) - FMUP André Lourenço, MD, PhD; Rui Cerqueira, MD Scientific Coordinators Liliana Costa, MsC; Pedro Mendes Ferreira, Phil Nuno M. Cardim, MD, PhD Sara Leite, MD, PhD; Joana Miranda, MD, PHD Adelino Leite Moreira, MD, PhD João A. Coelho, MsC; Luisa Guardão, DVM

Acknowledgements

Team Members & Co-Investigators	Sponsorship & Support
Centro de Investigação Médica (CIM) - FMUP	EcBIO™ R&D in Biotechnology
André Lourenço, MD, PhD; Rui Cerqueira, MD	St. Jude Medical™
Liliana Costa, MsC; Pedro Mendes Ferreira, PhD	Cordis™ - J & J
Sara Leite, MD, PhD ; Joana Miranda, MD, PHD	Abbot™ Vascular
João A. Coelho, MsC; Luisa Guardão, DVM	B-Braun™
	Scocime Medical™
Instituto Nacional de Engenharia Biomédica (INEB)	Terumo™
Perpétua Pinto-do-Ó, PhD; Diana Nascimento, PhD	Volcano Corporation™
Tiago Laundos Santos, PhD; Rita N. Gomes; MsC	

EcBio[™] R&D in Biotechnology Helder Cruz, PhD, MBA, CEO Pedro Cruz, PhD, MBA, CSO Miguel Santos, PhD, COO Rita Barcia, PhD